SOLAR PV STAND-ALONE SYSTEMS

Good Practice Guide: Installation

Conduct thorough site survey at installation site:
- Discuss and assess energy needs with end-user and community
- Verify suitable locations for installing PV arrays, controller, batteries and other components, based on code and design requirements
- Determine suitable, unshaded area for PV array
 - PV arrays should be installed on surfaces that are unshaded between 9:00 and 15:00
 - Determine shortest routing for conduit and wiring systems
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

Complete system documentation:
- Design/Sizing specifications
- Site layout drawings
- Electrical diagrams
- Complete components list

Be aware of electrical and chemical hazards:
- Use proper tools and personal protection equipment
- Use personnel fall arrest equipment
- Provide for at least 10cm space behind module for ventilation
- Mount PV array to appropriate angle!
- Beware of falling objects on PV array, e.g. coconuts

For pole mount installations, install foundation and mounting pole first:
- Mounting pole should be at least 2m above ground
- Proper shock absorbing mount (10kilo newtons) is required
- Use of appropriate wiring size is critical
- Voltage drop increases with cable length
- More than 5% (or less than 0.55V in 12V system)
- Consider accessibility for installation, maintenance and safety
- Plan for future scalability of PV system

For roof installations, ensure that weight is supported by house frame(s):
- Mounting points should be on the wooden frames of the house
- Fasten metal parts of module mounts with bolts or screws, never use nails
- Provide for at least 10cm space behind module for ventilation
- Tilt PV array to appropriate angle!
- Beware of falling objects on PV array, e.g. coconuts

Assemble and install PV array on poletop:
- Attach long side perpendicular to rail
- Tilt PV array to appropriate angle!

Cabaling and Connecting:

- **Installing Batteries and Controllers**
 - **Cable Options**
 - Use of appropriate wiring size is critical
 - Voltage drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system
 - **Cable Types**
 - USE-2 is rated for 90°C wet or dry, 600 volts, and is sunlight resistant
 - Use of appropriate wiring size is critical
 - Voltage drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Connecting Components**
 - **PV Modules**
 - Mount charge controller and inverter as close as possible to battery bank
 - Do not mount controller(s) directly above the battery bank
 - Mount controller(s) solidly to the building in a room that is neither very cold nor hot
 - **Conduit and Wiring**
 - Fasten wires coming from the controller within 6 cm of the connections so no pulling on the wire will occur at the controller
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - **Battery Bank**
 - Voltage drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Secure**
 - **Connections**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Grounding**
 - **Grounding System**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Security**
 - **Access**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Operation**
 - **Safety**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Maintenance**
 - **Testing and Inspection**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Compliance**
 - **Regulations**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Monitoring and Control**
 - **Monitoring**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **System Efficiency**
 - **Performance**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Environmental Impact**
 - **Impact Assessment**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Economic Analysis**
 - **Costs**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Community Engagement**
 - **Community Input**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Electricity Supply**
 - **Supply Options**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Energy Storage**
 - **Storage Solutions**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Education and Training**
 - **Training Programs**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **System Integration**
 - **Integration Planning**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Safety**
 - **Precautions**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Emergency Management**
 - **Emergency Planning**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Insurance**
 - **Insurance Options**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Disaster Recovery**
 - **Recovery Planning**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **System Reliability**
 - **Reliability Measures**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Future Considerations**
 - **Future Trends**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Conclusion**
 - **Summary**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **References**
 - **Related Resources**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Appendices**
 - **Technical Notes**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Glossary**
 - **Key Terms**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system

- **Index**
 - **Index Entries**
 - Voltages drop increases with cable length
 - More than 5% (or less than 0.55V in 12V system)
 - Consider accessibility for installation, maintenance and safety
 - Plan for future scalability of PV system